

Modélisation des fumées d'incendie d'un entrepôt de stockage de marchandises diverses Mouflers l'Etoile (80)

Juillet 2018 Rapport n° 94664/A

BIGS

165bis, rue de Vaugirard 75015 PARIS

Téléphone : 01 56 54 33 99 Télécopie : 01 56 54 33 90

Antea Group Région SUD

Pôle Environnement Dossiers réglementaires, Audit et Conseil

Parc Napollon – 400, avenue du Passe-Temps

Bât. C – 13676 AUBAGNE Cedex

Tél.: 04 42 08 70 70 Fax.: 04 42 08 70 71

Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

Sommaire

		Pages
1. I	NTRODUCTION	4
	METHODES ET MOYENS DE CALCUL UTILISES POUR LA MODELISATION DES PHEI	
2.1		
_	2.1.1 Méthodes et moyens de calcul mis en application	
2	2.1.2 Caractérisation des débits de polluants	
2	2.1.3 Calcul de la puissance thermique totale $\dot{Q}_{_t}$	7
2	2.1.4 Calcul de la hauteur d'émission des fumées et de l'air entraîné	7
2	2.1.5 Modélisation de la dispersion atmosphérique des polluants	
2.2	SEUILS D'EFFETS RETENUS DANS LE CADRE DE LA MODELISATION DES PHENOMENES DANGEREUX	
3. N	MODELISATION DU PHENOMENE DANGEREUX N°1	12
3.1	ESTIMATION DE LA VITESSE DE COMBUSTION	12
3.2	CARACTERISTIQUES DU TERME SOURCE	14
3.3	Duree d'exposition	14
3.4	EVALUATION DE L'INTENSITE DES EFFETS DU PHENOMENE DANGEREUX N°1 - CONCLUSION	15
4. N	MODELISATION DU PHENOMENE DANGEREUX N°2	17
4.1	ESTIMATION DE LA VITESSE DE COMBUSTION	17
4.2	CARACTERISTIQUES DU TERME SOURCE	
4.3	Duree d'exposition	20
4.4	Evaluation de l'intensite des effets du phenomene dangereux ${\sf n}^{\circ}2$ - Conclusion	
5. N	MODELISATION DU PHENOMENE DANGEREUX N°3	23
5.1	ESTIMATION DE LA VITESSE DE COMBUSTION	23
5.2	CARACTERISTIQUES DU TERME SOURCE	26
5.3	Duree d'exposition	27
5.4	EVALUATION DE L'INTENSITE DES EFFETS DU PHENOMENE DANGEREUX N°3 - CONCLUSION	28

Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

Liste des Tableaux
Tableau 1 : Conditions météorologiques retenues pour la modélisation
Tableau 2 : Valeurs de référence relatives aux seuils de toxicité aiguë9
Tableau 3 : Valeurs seuils de toxicité aiguë à retenir en l'absence de connaissance en toxicologie
Tableau 4 : Seuils d'effets irréversibles pour des expositions de 60 minutes
Tableau 5 : Seuils des premiers effets létaux (SPEL) pour des expositions de 60 minutes
Tableau 6 : Seuils d'effets létaux significatifs (SELS) pour des expositions de 60 minutes
$Tableau\ 7: Cellule\ de\ 11\ 839\ m^2-Proportions\ de\ matériaux\ dans\ les\ différentes\ palettes\ type\ .\ 12$
Tableau 8 : Quantités de matières combustibles présentes dans la cellule de 11 839 m² 12
Tableau 9 : Caractéristiques de combustion des produits présents
Tableau 10 : Caractéristiques moyennes de combustion des matières combustibles présentes 13
Tableau 11 : Débits massiques de polluants
Tableau 12 : PhD1 – Distances d'effets (au sol et en hauteur)
Tableau 13 : Cellule de 861 m² – Proportions de matériaux dans les différentes palettes type 17
Tableau 14 : Quantités de matières combustibles présentes dans la cellule de 861 m² 18
Tableau 15 : Caractéristiques de combustion des produits présents
Tableau 16 : Caractéristiques moyennes de combustion des matières combustibles présentes 19
Tableau 17 : Débits massiques de polluants
Tableau 18 : PhD2 – Distances d'effets (au sol et en hauteur)
Tableau 19 : Cellules de 861 m² et 10 950 m² – Proportions de matériaux dans les différentes
palettes type
Tableau 20 : Quantités de matières combustibles présentes dans la cellule de 861 m² 24
Tableau 21 : Quantités de matières combustibles présentes dans la cellule de 10 950 m ² 24
Tableau 22 : Quantités de matières combustibles présentes pour les 2 cellules
Tableau 23 : Caractéristiques de combustion des produits présents
Tableau 24 : Caractéristiques moyennes de combustion des matières combustibles présentes 26
Tableau 25 : Débits massiques de polluants
Tableau 26 : PhD3 – Distances d'effets (au sol et en hauteur)
<u>Liste des Figures</u>
Figure 1 : PhD1 - Vue en coupe verticale des panaches de fumées correspondant aux effets
irréversibles (SEI) en présence des différentes conditions météorologiques étudiées 15
Figure 2 : PhD1 - Vue en coupe verticale des panaches de fumées correspondant aux premiers
effets létaux (SPEL) en présence des différentes conditions météorologiques étudiées 15
Figure 3 : PhD1 - Vue en coupe verticale des panaches de fumées correspondant aux effets létaux
significatifs (SELS) en présence des différentes conditions météorologiques étudiées 16
Figure 4 : PhD2 - Vue en coupe verticale des panaches de fumées correspondant aux effets
irréversibles (SEI) en présence des différentes conditions météorologiques étudiées 21
Figure 5 : PhD2 - Vue en coupe verticale des panaches de fumées correspondant aux premiers
effets létaux (SPEL) en présence des différentes conditions météorologiques étudiées 21
Figure 6 : PhD2 - Vue en coupe verticale des panaches de fumées correspondant aux effets létaux
significatifs (SELS) en présence des différentes conditions météorologiques étudiées 22
Figure 7 : PhD3 - Vue en coupe verticale des panaches de fumées correspondant aux effets
irréversibles (SEI) en présence des différentes conditions météorologiques étudiées 28
Figure 8 : PhD3 - Vue en coupe verticale des panaches de fumées correspondant aux premiers
effets létaux (SPEL) en présence des différentes conditions météorologiques étudiées 28
Figure 9 : PhD3 - Vue en coupe verticale des panaches de fumées correspondant aux effets létaux
significatifs (SELS) en présence des différentes conditions météorologiques étudiées 29

AΝ	$\Gamma\Gamma$	\sim D	\sim 1	חו

BIGS – Paris (75) Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

1. Introduction

Dans le cadre de la réalisation d'études de dangers d'un entrepôt situé à Mouflers l'Etoile (80), BIGS souhaite un appui technique pour la réalisation de l'étude de dispersion atmosphérique d'incendies de cellules de stockage de matières diverses afin de pouvoir évaluer les éventuels effets toxiques générés par les fumées de l'incendie.

Les 3 cas étudiés dans le présent rapport sont :

- Phénomène dangereux n°1 : Incendie de 1 cellule :
 - 1 cellule de stockage de 11 839 m² stockant des matières plastiques (rubriques 2662/2663) d'une contenance totale de 9 396 t;
- Phénomène dangereux n°2 : Incendie de 1 cellule :
 - 1 cellule de stockage de 861 m² stockant des produits pour piscine chlorés d'une contenance de 82,5 t et des matières plastiques (rubriques 2662/2663) d'une contenance de 631,2 t;
- Phénomène dangereux n°3 : Incendie généralisé de 2 cellules :
 - 1 cellule de stockage de 861 m² stockant des produits pour piscine chlorés d'une contenance de 82,8 t et des matières plastiques (rubriques 2662/2663) d'une contenance de 631,2 t,
 - 1 cellule de stockage de 10 950 m² stockant des marchandises diverses (rubrique 1510) d'une contenance de 9 156 t.

BIGS — Paris (75) Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses — Mouflers l'Etoile (80) Rapport n° 94664/A

2. Méthodes et moyens de calcul utilisés pour la modélisation des phénomènes dangereux

2.1 Evaluation des effets toxiques des fumées d'incendie

2.1.1 Méthodes et moyens de calcul mis en application

La méthodologie d'évaluation des effets toxiques des fumées de l'incendie est basée sur le rapport INERIS Ω -16 « Toxicité et dispersion des fumées d'incendie — Phénoménologie et modélisation des effets ».

Sous l'effet d'une augmentation de température, les produits stockés sont susceptibles de conduire à la formation de substances toxiques telles que HF, HBr, HI, HCN, NO₂, HCl, CO, CO₂.

La composition des fumées va dépendre du produit et des atomes le constituant. Sous l'effet de la chaleur, la molécule va en effet se dissocier :

- le fluor, le chlore et le brome contenus dans les molécules halogénées se combinent alors avec l'hydrogène pour former de l'acide fluorhydrique, de l'acide chlorhydrique et bromhydrique;
- l'azote, le carbone pour former de l'acide cyanhydrique, des oxydes d'azote et de carbone.

La démarche d'évaluation de la toxicité des fumées et de leur impact potentiel sur la santé repose sur :

- la définition du terme source (débit de polluant et consommation d'oxygène pour la combustion et donc d'air, surélévation du panache),
- la dispersion et la diffusion du polluant à l'atmosphère,
- l'évaluation des effets sur les populations (calcul des concentrations au sol sous l'axe du panache, comparaison aux seuils d'effets toxiques retenus).

Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

2.1.2 Caractérisation des débits de polluants

Les composés élémentaires constitutifs d'un produit, au cours d'un incendie conduisent généralement à la formation des produits suivants :

- pour la combustion complète du carbone, à la formation de monoxyde et de dioxyde de carbone suivant un rapport molaire CO/CO₂ égal à 0,1 soit 0,21 g de CO par gramme de carbone,
- une part significative de l'azote (60 %) se recombine en azote moléculaire (N₂), le reste (40 %) étant converti à part égale en acide cyanhydrique (HCN) et en oxydes d'azote (NO₂),
- la totalité du soufre s'oxyde en dioxyde de soufre (SO₂), les autres espèces chimiques étant a priori moins toxiques,
- la totalité du chlore se transforme en acide chlorhydrique (HCI),
- la totalité du fluor se transforme en acide fluorhydrique (HF),
- la totalité du brome se transforme en acide bromhydrique (HBr),
- le phosphore reste piégé sous forme solide. Concernant les produits issus du phosphore, sa prise en compte est actuellement difficile en l'absence de données fiables.

Dans le cadre de l'étude, ces hypothèses peuvent être considérées comme majorantes, admettant l'absence de résidus solides de combustion. En réalité, du carbone, du soufre et de l'azote se retrouvent dans les imbrûlés, restant piégés sous forme solide.

Sur les bases précédentes, les émissions massiques en composés gazeux par masse unitaire de l'élément initial s'établissent conformément au tableau ci-dessous :

Pour 1 g de :	Substance dégagée	(g)
	N_2	1,21
N	HCN	0,36
	NO ₂	0,64
C	СО	0,21
C	CO ₂	3,33
S	SO ₂	2,00
Br	HBr	1,01
Cl	HCl	1,03
F	HF	1,05

Les débits d'émission Q exprimés en g/g de produit combustible peuvent se calculer de la façon suivante :

$$Q = \frac{C_{m(p)}}{M_{\text{m}}} \cdot \sum_{i} (n_{i}.M_{i} \cdot Q_{i})$$

Avec : $C_{m(p)}$: concentration massique de la matière active m dans le produit p,

M_m: masse molaire de la matière active m,

n_{i:} nombre d'atomes de l'élément i dans la matière active,

M_{i:} masse molaire de l'élément i.

Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

2.1.3 Calcul de la puissance thermique totale \dot{Q}_i

La puissance thermique totale est déterminée par la relation suivante :

$$\dot{Q}_t = m * S * PCI$$

Où:

m est la vitesse de combustion (en g/m²/s) PCI est le Pouvoir Calorifique Inférieur (en J/g) S est la surface en feu (m²)

2.1.4 Calcul de la hauteur d'émission des fumées et de l'air entraîné

La hauteur d'émissions des fumées est déterminée par la relation (Heskestad) :

$$L = 0.166 (10^{3*}Q_c)^{0.4}$$

où Q_c est la puissance thermique convectée en MW (prise égale à 60 % de la puissance thermique totale \dot{Q}_c).

Le débit massique des fumées à la hauteur L peut être calculé à l'aide de la relation suivante :

$$D = 3.24 \cdot \dot{Q}_t$$

où \dot{Q}_{t} est la puissance thermique totale (en MW).

2.1.5 Modélisation de la dispersion atmosphérique des polluants

Le calcul de la dispersion dans l'atmosphère est réalisé avec le logiciel PHAST (Process Hazard Analysis Software Tools), de DNV Technica, dans sa version 7.21.

PHAST utilise une méthode de dispersion gaz lourd et gaussienne. Le modèle prend en compte tous les aspects importants influençant le transport - diffusion des polluants, à savoir :

- les particularités de la topographie du site, par l'intermédiaire d'un paramètre de rugosité (fixé à 0,17 pour un environnement industriel et/ou urbain/semo-urbain),
- des conditions météorologiques spécifiques,
- la nature des traceurs chimiques traditionnels qui pour la plupart existent en base de données permettant de constituer des mélanges de produits toxiques.

Les conditions météorologiques retenues seront celles définies <u>pour les rejets verticaux</u> <u>et/ou en hauteur</u> dans la fiche n°2 (sur la dispersion toxique) de la partie 1 de la circulaire du 10 mai 2010 récapitulant les règles méthodologiques applicables aux études de dangers, à l'appréciation de la démarche de réduction du risque à la source et aux plans de prévention des risques technologiques (PPRT) dans les installations classées en application de la loi du 30 juillet 2003.

Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

Elles sont présentées dans le tableau ci-après.

Stabilité atmosphérique	Α	В		С		D		E	F
Vitesse du vent (m/s)	3	3	5	5	10	5	10	3	3
T° ambiante (°C)	20	20	20	20	20	20	20	20	15
T° du sol (°C)	20	20	20	20	20	20	20	20	15
Humidité relative (%)	70	70	70	70	70	70	70	70	70
Rayonnement solaire (kW/m²)	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0

Tableau 1 : Conditions météorologiques retenues pour la modélisation

Hauteur de la couche d'inversion

Le modèle de dispersion PHAST considère que la couche d'inversion de température (susceptible d'être observée) est « infranchissable » par le panache de fumées et que la dispersion ne s'opère que dans un volume limité les 2 plans horizontaux que constituent le sol et la couche d'inversion (située à l'altitude Z_{inversion}).

Toutefois, compte tenu de l'énergie thermo-cinétique initiale des fumées, dans le champ proche (typiquement les 100 premiers mètres), il est clair que malgré une inversion de température, le panache de fumées s'élèverait de toute façon.

Ainsi le fait de limiter la dispersion atmosphérique entre le sol et la couche d'inversion a pour conséquence de surestimer les concentrations à hauteur d'homme.

Pour déterminer une valeur de Z_{inversion} défavorable au sens de la dispersion mais réaliste compte-tenu de la modélisation retenue ensuite, l'altitude critique Zc, à partir de laquelle une couche d'inversion serait en mesure de stopper l'élévation des panaches malgré leurs énergies thermo-cinétiques restantes, doit être calculée.

Pour ce faire, on retient les corrélations proposées par Briggs qui permettent de calculer l'altitude de culmination d'un panache se dispersant dans une atmosphère très stable. Or une couche d'inversion de température est justement une zone de forte stabilité atmosphérique. Finalement, l'altitude Δh a été retenue comme correspondant à une bonne estimation de Zc.

$$\Delta h = 2.6 \cdot \left(\frac{F_b}{u.s}\right)$$

où le paramètre de flottabilité Fb vaut :

$$F_b = \left(1 - \frac{\rho_s}{\rho}\right) \cdot g \cdot r^2 \cdot w_s$$

et le paramètre de stabilité s vaut :

$$s = \frac{g}{T} \cdot \frac{d\theta}{dz}$$

avec ho_s : densité des gaz rejetés à la cheminée,

: densité de l'air,

r : le diamètre de la cheminée,

w_s: la vitesse des gaz rejetés à la cheminée,

g : l'accélération de la gravité,
T : la température ambiante,
\textit{\theta} : la température potentielle,

z: l'altitude.

Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

2.2 Seuils d'effets retenus dans le cadre de la modélisation des phénomènes dangereux

Les seuils retenus dans le cadre de la modélisation des phénomènes dangereux sont définis par l'arrêté du 29 septembre 2005 relatif « à l'évaluation et à la prise en compte de la probabilité d'occurrence, de la cinétique, de l'intensité des effets et de la gravité des conséquences des accidents potentiels dans les études des dangers des installations classées soumises à autorisation ».

Les conséquences d'un accident sont évaluées en termes de toxicité aiguë sur les populations exposées au passage d'un nuage de gaz toxique.

Les valeurs de référence retenues pour les installations classées sont présentées dans le tableau suivant.

Seuils de toxicité aiguë pour l'homme par inhalation							
	Types d'effets constatés	Concentration d'exposition	Référence				
	Effets Létaux Significatifs	SELS (CL 5 %)	Seuils de toxicité aiguë				
Exposition de 1 à 60 minutes	Premiers Effets Létaux	SPEL (CL 1 %)	Emissions accidentelles de substances chimiques dangereuses dans l'atmosphère.				
	Effets Irréversibles	SEI	Ministère de l'Ecologie et du Développement Durable. Institut National de l'Environnement Industriel et des Risques.				
	Effets Réversibles	SER	2003 (et ses mises à jour ultérieures)				

Tableau 2 : Valeurs de référence relatives aux seuils de toxicité aiguë

Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

Ces valeurs sont toujours associées à des durées d'exposition, le plus souvent de 1 à 60 minutes, mais dans certains cas, des valeurs sont disponibles pour des périodes plus longues (2 heures par exemple).

Ces valeurs, définies par le Ministère de l'Écologie, du Développement durable, des Transports et du Logement (MEDDTL), existent pour un certain nombre de substances. En revanche, dans certains cas, bien que le produit soit classé toxique, voire très toxique, il n'existe pas de valeur publiée par le Ministère relative à la toxicité aiguë. Dans ce cas, on utilise les valeurs internationales reconnues proposées dans le tableau du chapitre 1.1.11 de la partie 1 de la circulaire du 10 mai 2010¹, reprenant le guide pratique de l'INERIS « Choix des valeurs de toxicité aigüe en cas d'absence de valeurs françaises » de juillet 2009 :

		Durée d'exposition (min)						
	10	20	30	60	120	240	480	
SELS (SEL 5%)	ı	1	-	-	1	1	ı	
SPEL (SEL 1%)	AEGL-3	-	AEGL-3	ERPG-3 AEGL-3	-	AEGL-3	AEGL-3	
SEI	AEGL-2	-	AEGL-2 (IDLH)	ERPG-2 AEGL-2	-	AEGL-2	AEGL-2	

AEGL: Acute Exposure Guideline Levels de l'US-EPA ERPG: Emergency Response Planning Guidelines de l'AIHA IDLH: Immediately Dangerous to Life or Health Concentrations du NIOSH

Tableau 3 : Valeurs seuils de toxicité aiguë à retenir en l'absence de connaissance en toxicologie

Dans le cas d'un mélange de plusieurs produits toxiques, il est d'usage de prendre un seuil équivalent qui dépend à la fois des concentrations des divers polluants dans le mélange et des seuils qui leur sont propres.

Enfin, dans le cadre des durées d'expositions différentes de celles données dans la littérature (ou pour tenir compte de la variation de la concentration pendant la durée de l'exposition), il est utilisé une équation qui permet d'évaluer la dose intégrée conduisant aux mêmes effets (effets létaux significatifs, premiers effets létaux ou effets irréversibles).

Cette équation (loi de Haber) est du type Dose = $C^n \times t$ où :

- C = concentration inhalée ou d'exposition (mg/m³ ou ppm),
- t = temps d'exposition (min),
- n = constante de Haber, spécifique à chaque produit.

10

¹ Circulaire du 10 mai 2010 récapitulant les règles méthodologiques applicables aux études de dangers, à l'appréciation de la démarche, de réduction du risque à la source et aux plans de prévention des risques technologiques (PPRT) dans les installations classées en application de la loi du 30 juillet 2003.

Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

Les seuils de toxicité aiguë des composés considérés dans cette étude sont donnés ciaprès (pour une durée d'exposition de 60 minutes) :

Substances	SEI	Référence de la valeur seuil retenue	
dégagées	ppm	Reference de la valeur seuli retende	
СО	800 Seuils de toxicité aiguë – INERIS– DRC-09-103128-05616A		
CO ₂	20 000	Pas de seuils de toxicité aigue en France	
CO2	20 000	Utilisation du Revised IDLH	
HCI	40	Seuils de toxicité aiguë – INERIS– DRC-08-94398-11984A	
HCI		Extrapolation à 120 minutes par loi de Haber	
	HCN 10	Pas de valeur SEI en France compte-tenu des études disponibles (Seuils de	
HCN		toxicité aiguë – INERIS-DRC-08-94398-12727A)	
		Utilisation de l'ERPG-2 (cf. Tableau 3)	
NO ₂	40	Seuils de toxicité aiguë – INERIS–DRC-08-94398-13333A	

Tableau 4 : Seuils d'effets irréversibles pour des expositions de 60 minutes

Substances	SPEL	Référence de la valeur seuil retenue		
dégagées	ppm	Reference de la valeur seuli retenue		
СО	3 200	Seuils de toxicité aiguë – INERIS– DRC-09-103128-05616A		
CO ₂	20 000	Pas de seuils de toxicité aigue en France De façon conservative et conformément au document INERIS « Oméga-16 - Toxicité et dispersion des fumées d'incendie : Phénoménologie et modélisation » de mars 2005, lorsqu'un des seuils n'est pas disponible, on retient le seuil correspondant à l'effet inférieur (par exemple, on utilise le SEI comme SEPL, et/ou le SEPL pour le SELS).		
HCl	240	Seuils de toxicité aiguë – INERIS– DRC-08-94398-11984A		
HCN	41	Seuils de toxicité aiguë – INERIS–DRC-08-94398-12727A		
NO ₂	70	Seuils de toxicité aiguë – INERIS–DRC-08-94398-13333A		

Tableau 5 : Seuils des premiers effets létaux (SPEL) pour des expositions de 60 minutes

Substances	SELS	Référence de la valeur seuil retenue			
dégagées	ppm	Neierence de la valeur Sedir retende			
СО	3200	La détermination du SELS n'a pas été possible compte-tenu des études disponibles (Seuils de toxicité aiguë – INERIS–DRC-09-103128-05616A) De façon conservative et conformément au document INERIS « Oméga-16 - Toxicité et dispersion des fumées d'incendie : Phénoménologie et modélisation » de mars 2005, lorsqu'un des seuils n'est pas disponible, on retient le seuil correspondant à l'effet inférieur (par exemple, on utilise le SEI comme SEPL, et/ou le SEPL pour le SELS).			
CO ₂	20 000	Pas de seuils de toxicité aigue en France De façon conservative et conformément au document INERIS « Oméga-16 - Toxicité et dispersion des fumées d'incendie : Phénoménologie et modélisation » de mars 2005, lorsqu'un des seuils n'est pas disponible, on retient le seuil correspondant à l'effet inférieur (par exemple, on utilise le SEI comme SEPL, et/ou le SEPL pour le SELS).			
HCl	379	Seuils de toxicité aiguë – INERIS– DRC-08-94398-11984A			
HCN	63	Seuils de toxicité aiguë – INERIS–DRC-08-94398-12727A			
NO ₂	73	Seuils de toxicité aiguë – INERIS–DRC-08-94398-13333A			

Tableau 6 : Seuils d'effets létaux significatifs (SELS) pour des expositions de 60 minutes

Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

3. Modélisation du phénomène dangereux n°1

3.1 Estimation de la vitesse de combustion

Le scénario étudié est l'incendie d'une cellule :

 1 cellule de stockage de 11 839 m² stockant des matières plastiques (rubriques 2662/2663) d'une contenance totale de 9 396 t.

Les palettes pèsent 600 kg, dont 30 kg de palette en bois et 570 kg de produit stockés. Les proportions de matériaux dans les différents types de palettes sont données ciaprès.

Matériaux	Palette type 2662/2663
Bois	5 %
Polypropylène (PP)	19 %
Polyéthylène (PE)	19 %
Polystyrène (PS)	19 %
PVC	19 %
Polyuréthane (PU)	19 %

Tableau 7 : Cellule de 11 839 m² - Proportions de matériaux dans les différentes palettes type

Les quantités de matières combustibles présentes sont les suivantes (sur la base de 15 660² palettes de type 2662/2663) :

Matériaux	Quantité présente en tonnes
Bois	469,80
Polypropylène (PP)	1785,24
Polyéthylène (PE)	1785,24
Polystyrène (PS)	1785,24
PVC	1785,24
Polyuréthane (PU)	1785,24
Total	9 396

Tableau 8 : Quantités de matières combustibles présentes dans la cellule de 11 839 m²

-

² 15 660 palettes de 600 kg soit 9 396 tonnes

Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

Les caractéristiques des combustibles présents sont les suivantes :

Matériaux	Vitesse de combustion (g/m²/s)	Source	PCI (MJ/kg)	Source
Polypropylène (PP)	14	Document « an introduction to fire dynamics » 2nd, Dougal Drysdale	43,4	SFPE Handbook of Fire Protection Engineering - Third Edition - 2002
Polyéthylène (PE)	14	Document « an introduction to fire dynamics » 2nd, Dougal Drysdale	Document « an introduction to fire dynamics » 2nd, Dougal 43,6	
Polystyrène (PS)	35	Document « an introduction to fire dynamics » 2nd, Dougal 39,2 Drysdale		SFPE Handbook of Fire Protection Engineering - Third Edition - 2002
PVC	21,7	A study of the flammability of plastics in vehicle components and parts by A. Tewarson (Factory Mutual) October 1997	16,4	SFPE Handbook of Fire Protection Engineering - Third Edition - 2002
Polyuréthane (PU)	26	Document « an introduction to fire dynamics » 2nd, Dougal Drysdale	23,2	SFPE Handbook of Fire Protection Engineering - Third Edition - 2002
Bois	13	Document « an introduction to fire dynamics » 2nd, Dougal Drysdale	16,4	SFPE Handbook of Fire Protection Engineering - Third Edition - 2002

Tableau 9 : Caractéristiques de combustion des produits présents

Le tableau suivant présente les résultats des caractéristiques de combustion moyennes du stockage en fonction de sa composition :

Matériaux	Quantité présente (en tonnes)	Vitesse de combustion (g/m²/s)	PCI (MJ/kg)
Polypropylène (PP)	1785,24	14	43,40
Polyéthylène (PE)	1785,24	14	43,60
Polystyrène (PS)	1785,24	35	39,20
PVC	1785,24	21,7	16,40
PU	1785,24	26	23,20
Bois	469,80	13	16,40
Caractéristiques moyennes de combustion du stockage		21,68	32,32

Tableau 10 : Caractéristiques moyennes de combustion des matières combustibles présentes

Les conséquences de l'incendie de ce stockage seront donc modélisées en retenant :

- une vitesse de combustion moyenne de 21,68 g/m²/s,
- un pouvoir calorifique de 32,32 MJ/kg.

Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

3.2 Caractéristiques du terme source

La surface de la zone de stockage est de 11 839 m².

Les débits de polluants sont calculés selon la méthodologie présentée au chapitre 2.1, en considérant une vitesse de régression moyenne de 21,68 g/m²/s. Ils sont présentés dans le tableau suivant :

Composé	CO ₂	со	HCI	HCN	NO ₂	Air	Fumées totales
Débit massique (en kg/s)	572,1	36,4	28,6	3,1	5,2	26 232	26 877

Tableau 11 : Débits massiques de polluants

Le débit total des fumées (polluants + air entraîné) est de 26 877 kg/s au sommet des flammes.

La hauteur d'émission des fumées toxiques, calculée selon méthodologie présentée au chapitre 2.1.3, est de 79 m.

3.3 Durée d'exposition

Selon le « Glossaire des risques technologiques » (partie 3 de la circulaire du 10 mai 2010), la cinétique est définie comme la vitesse d'enchaînement des événements constituant une séquence accidentelle, de l'événement initiateur aux conséquences sur les éléments vulnérables.

La cinétique d'un phénomène dangereux pourra être qualifiée de lente dans son contexte si elle permet la mise en œuvre de mesures de sécurité suffisantes dans le cadre d'un plan d'urgence interne et externe, pour protéger les personnes à l'extérieur de l'installation avant qu'elles ne soient atteintes par les effets du phénomène dangereux.

Dans le cadre de l'étude, la durée d'exposition considérée est de 60 minutes, correspondant à la durée maximale d'exposition envisagée pour les seuils d'effets toxiques dans l'Arrêté Ministériel du 29/05/2005 (cf. Tableau 2 : Valeurs de référence relatives aux seuils de toxicité aiguë).

Avec les débits d'air et de produits toxiques, les seuils équivalents retenus pour une exposition de 60 minutes sont :

SEI équivalent : 17 712 ppm,
SPEL équivalent : 73 353 ppm,
SELS équivalent : 98 635 ppm.

Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

3.4 Evaluation de l'intensité des effets du phénomène dangereux n°1 - Conclusion

Les figures suivantes présentent les panaches de fumées (en coupe verticale dans le sens du vent) correspondant aux différents effets.

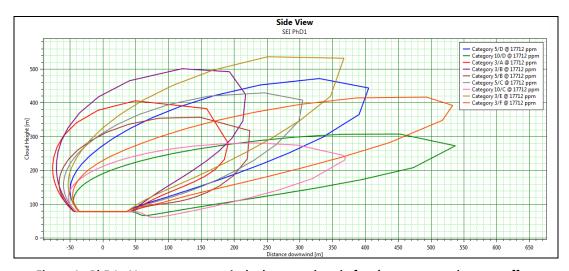


Figure 1 : PhD1 - Vue en coupe verticale des panaches de fumées correspondant aux effets irréversibles (SEI) en présence des différentes conditions météorologiques étudiées

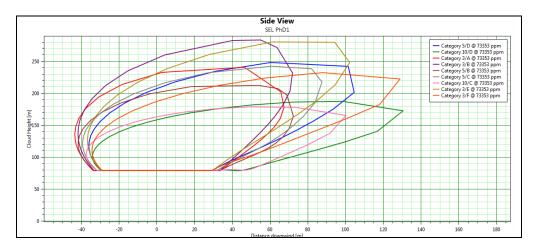


Figure 2 : PhD1 - Vue en coupe verticale des panaches de fumées correspondant aux premiers effets létaux (SPEL) en présence des différentes conditions météorologiques étudiées

Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

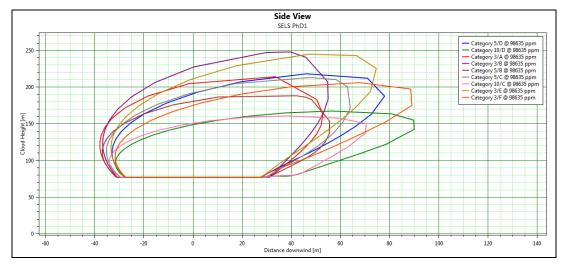


Figure 3 : PhD1 - Vue en coupe verticale des panaches de fumées correspondant aux effets létaux significatifs (SELS) en présence des différentes conditions météorologiques étudiées

Les distances d'effets pour une durée d'exposition de 60 minutes sont les suivantes :

Seuil	Distance
SEI	 Aucun effet toxique n'est observé à hauteur d'homme (h < 2 m) Hauteur minimale d'atteinte du seuil toxique : 61 m à 75 m de la source Distance maximal atteinte par les fumées toxiques : 536 m de la source à h = 273 m
SPEL	 Aucun effet toxique n'est observé à hauteur d'homme (h < 2 m) Hauteur minimale d'atteinte du seuil toxique : 79 m à la source Distance maximal atteinte par les fumées toxiques : 130 m de la source à h = 172 m
SELS	 Aucun effet toxique n'est observé à hauteur d'homme (h < 2 m) Hauteur minimale d'atteinte du seuil toxique : 79 m à la source Distance maximal atteinte par les fumées toxiques : 90 m de la source à h = 154 m

Tableau 12: PhD1 – Distances d'effets (au sol et en hauteur)

Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

4. Modélisation du phénomène dangereux n°2

4.1 Estimation de la vitesse de combustion

Le scénario étudié est l'incendie d'une cellule :

 1 cellule de stockage de 861 m² stockant des produits pour piscine chlorés d'une contenance de 82,8 t et des matières plastiques (rubriques 2662/2663) d'une contenance de 631,2 t.

Cette cellule accueille un stockage de différents produits de piscine chlorés. Après analyse des Fiches de Données de Sécurité (FDS) des produits susceptibles d'être présents, il apparait que le principal constituant de ces produits est le Symclosene ou acide trichloroisocyanurique; ce produit est donc retenu comme représentatif des produits de piscine chlorés.

Il est à noter que la formule chimique du Symclosene est la suivante : $C_3Cl_3N_3O_3$. La combustion de ce produit va donc générer des oxydes de carbone (CO et CO_2), de l'acide chlorhydrique (HCl), des oxydes d'azote (NO₂ et HCN).

Les palettes pèsent 600 kg, dont 30 kg de palette en bois et 570 kg de produit stockés. Les proportions de matériaux dans les différents types de palettes sont données ciaprès.

Matériaux	Palette stockant des produits piscine	Palette type 2662/2663
Bois	5 %	5 %
Polypropylène (PP)	-	19 %
Polyéthylène (PE)	-	19 %
Polystyrène (PS)	-	19 %
PVC	-	19 %
Polyuréthane (PU)	-	19 %
Symclosene	95 %	

Tableau 13: Cellule de 861 m² - Proportions de matériaux dans les différentes palettes type

Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

Les quantités de matières combustibles présentes sont les suivantes (sur la base de 138³ palettes de produits pour piscine et de 1 052⁴ palettes de type 2662/2663) :

	Quantité présente (en tonnes)			
Matériaux	Produis pour piscine	Matières plastiques (2662/2663)	TOTAL	
Bois	4,14	31,56	35,70	
Polypropylène (PP)	-	119,93	119,93	
Polyéthylène (PE)	-	119,93	119,93	
Polystyrène (PS)	ı	119,93	119,93	
PVC	ı	119,93	119,93	
Polyuréthane (PU)	-	119,93	119,93	
Symclosene	78,66	-	78,66	
Total	82,8	631,2	714	

Tableau 14 : Quantités de matières combustibles présentes dans la cellule de 861 m²

Les caractéristiques des combustibles présents sont les suivantes :

Matériaux	Vitesse de combustion (g/m²/s)	Source	PCI (MJ/kg)	Source
Polypropylène (PP)	14	Document « an introduction to fire dynamics » 2nd, Dougal Drysdale	43,4	SFPE Handbook of Fire Protection Engineering - Third Edition - 2002
Polyéthylène (PE)	14	Document « an introduction to fire dynamics » 2nd, Dougal 43,6 Drysdale		SFPE Handbook of Fire Protection Engineering - Third Edition - 2002
Polystyrène (PS)	35	Document « an introduction to fire dynamics » 2nd, Dougal Drysdale	fire dynamics » 2nd, Dougal 39,2	
PVC	21,7	A study of the flammability of plastics in vehicle components and parts by A. Tewarson (Factory Mutual) October 1997	16,4	SFPE Handbook of Fire Protection Engineering - Third Edition - 2002
Polyuréthane (PU)	26	Document « an introduction to fire dynamics » 2nd, Dougal Drysdale	23,2	SFPE Handbook of Fire Protection Engineering - Third Edition - 2002
Bois	13	Document « an introduction to fire dynamics » 2nd, Dougal 16,4 Drysdale		SFPE Handbook of Fire Protection Engineering - Third Edition - 2002
Symclosene	/	Aucune donnée disponible	/	Aucune donnée disponible

Tableau 15 : Caractéristiques de combustion des produits présents

³ 138 palettes de 600 kg soit 82,8 tonnes

⁴ 1 052 palettes de 600 kg soit 631,8 tonnes

Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

Le tableau suivant présente les résultats des caractéristiques de combustion moyennes du stockage en fonction de sa composition :

Matériaux	Quantité présente (en tonnes)	Vitesse de combustion (g/m²/s)	PCI (MJ/kg)
Polypropylène (PP)	119,93	14	43,40
Polyéthylène (PE)	119,93	14	43,60
Polystyrène (PS)	119,93	35	39,20
PVC	119,93	21,7	16,40
PU	119,93	26	23,20
Bois	35,70	13	16,40
Symclosene	78,66	/	/
Caractéristiques moyenr stocka		21,68	32,32

Tableau 16: Caractéristiques moyennes de combustion des matières combustibles présentes

Les conséquences de l'incendie de ce stockage seront donc modélisées en retenant :

- une vitesse de combustion moyenne de 21,68 g/m²/s,
- un pouvoir calorifique de 32,32 MJ/kg.

4.2 Caractéristiques du terme source

La surface de la zone de stockage est de 861 m².

Les débits de polluants sont calculés selon la méthodologie présentée au chapitre 2.1, en considérant une vitesse de régression moyenne de 21,68 g/m²/s. Ils sont présentés dans le tableau suivant :

Composé	CO ₂	со	HCI	HCN	NO ₂	Air	Fumées totales
Débit massique (en kg/s)	38	2,4	2,8	0,3	0,6	1 910	1 954

Tableau 17 : Débits massiques de polluants

⁵ Les caractéristiques de combustion moyennes de la cellule ont été calculées sans tenir compte des caractéristiques de combustion du Symclosene pour lequel aucune donnée n'est disponible. S'agissant d'un produit de traitement pour piscine, il ne présente pas de caractère combustible élevé et, en tout état de cause, plus faible que les matières de type plastiques, bois ou cartons. Par ailleurs, il ne représente qu'environ 10% de la masse totale des produits stockés.

L'approche retenue est donc dimensionnante.

_____ ANTEA GROUP

BIGS – Paris (75)

Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

Le débit total des fumées (polluants + air entraîné) est de 1 954 kg/s au sommet des flammes.

La hauteur d'émission des fumées toxiques, calculée selon méthodologie présentée au chapitre 2.1.3, est de 27 m.

4.3 Durée d'exposition

Selon le « Glossaire des risques technologiques » (partie 3 de la circulaire du 10 mai 2010), la cinétique est définie comme la vitesse d'enchaînement des événements constituant une séquence accidentelle, de l'événement initiateur aux conséquences sur les éléments vulnérables.

La cinétique d'un phénomène dangereux pourra être qualifiée de lente dans son contexte si elle permet la mise en œuvre de mesures de sécurité suffisantes dans le cadre d'un plan d'urgence interne et externe, pour protéger les personnes à l'extérieur de l'installation avant qu'elles ne soient atteintes par les effets du phénomène dangereux.

Dans le cadre de l'étude, la durée d'exposition considérée est de 60 minutes, correspondant à la durée maximale d'exposition envisagée pour les seuils d'effets toxiques dans l'Arrêté Ministériel du 29/05/2005 (cf. Tableau 2 : Valeurs de référence relatives aux seuils de toxicité aiguë).

Avec les débits d'air et de produits toxiques, les seuils équivalents retenus pour une exposition de 60 minutes sont :

SEI équivalent : 12 754 ppm,
SPEL équivalent : 53 011 ppm,
SELS équivalent : 72 098 ppm.

Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

4.4 Evaluation de l'intensité des effets du phénomène dangereux n°2 - Conclusion

Les figures suivantes présentent les panaches de fumées (en coupe verticale dans le sens du vent) correspondant aux différents effets.

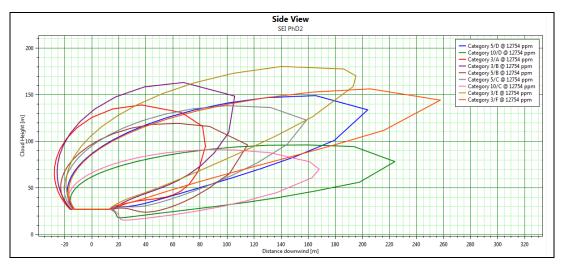


Figure 4 : PhD2 - Vue en coupe verticale des panaches de fumées correspondant aux effets irréversibles (SEI) en présence des différentes conditions météorologiques étudiées

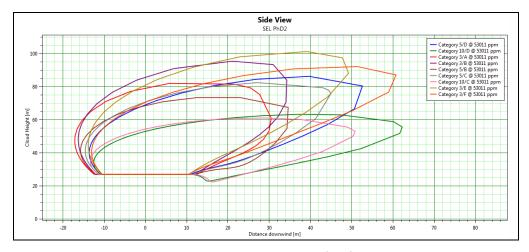


Figure 5 : PhD2 - Vue en coupe verticale des panaches de fumées correspondant aux premiers effets létaux (SPEL) en présence des différentes conditions météorologiques étudiées

Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

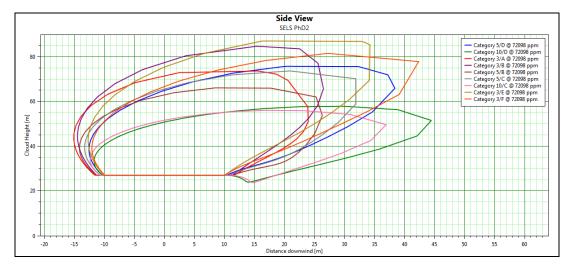


Figure 6 : PhD2 - Vue en coupe verticale des panaches de fumées correspondant aux effets létaux significatifs (SELS) en présence des différentes conditions météorologiques étudiées

Les distances d'effets pour une durée d'exposition de 60 minutes sont les suivantes :

Seuil	Distance
SEI	 Aucun effet toxique n'est observé à hauteur d'homme (h < 2 m) Hauteur minimale d'atteinte du seuil toxique : 15 m à 22 m de la source Distance maximal atteinte par les fumées toxiques : 257 m de la source à h = 144 m
SPEL	 Aucun effet toxique n'est observé à hauteur d'homme (h < 2 m) Hauteur minimale d'atteinte du seuil toxique : 22 m à 16 m de la source Distance maximal atteinte par les fumées toxiques : 62 m de la source à h = 55 m
SELS	 Aucun effet toxique n'est observé à hauteur d'homme (h < 2 m) Hauteur minimale d'atteinte du seuil toxique : 23 m à 14 m de la source Distance maximal atteinte par les fumées toxiques : 44 m de la source à h = 51 m

Tableau 18: PhD2 - Distances d'effets (au sol et en hauteur)

Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

5. Modélisation du phénomène dangereux n°3

5.1 Estimation de la vitesse de combustion

Le scénario étudié est l'incendie généralisé de 2 cellules :

- 1 cellule de stockage de 861 m² stockant des produits pour piscine chlorés d'une contenance de 82,8 t et des matières plastiques (rubriques 2662/2663) d'une contenance de 631,2 t,
- 1 cellule de stockage de 10 950 m² stockant des marchandises diverses (rubrique 1510) d'une contenance de 9 156 t.

Les proportions de matériaux dans les différents types de palettes sont données ciaprès.

Matériaux	Palette type 1510	Palette type 2662/2663	Palette stockant des produits piscine
Bois	5 %	5 %	5 %
Papier/carton	70 %	-	-
Polypropylène (PP)	7,5 %	19 %	-
Polyéthylène (PE)	7,5 %	19 %	-
Polystyrène (PS)	7,5 %	19 %	-
PVC	2,5 %	19 %	-
PU	-	19 %	-
Symclosene	-	5 %	95 %

Tableau 19 : Cellules de 861 m² et 10 950 m² – Proportions de matériaux dans les différentes palettes type

Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

Pour la cellule de 861 m², les quantités de matières combustibles présentes sont les suivantes (sur la base de 138⁶ palettes de produits pour piscine et de 1 052⁷ palettes de type 2662/2663) :

	Quantité présente (en tonnes)			
Matériaux	Produis pour piscine	Matières plastiques (2662/2663)	TOTAL	
Bois	4,14	31,56	35,7	
Polypropylène (PP)	-	119,93	119,93	
Polyéthylène (PE)	-	119,93	119,93	
Polystyrène (PS)	-	119,93	119,93	
PVC	1	119,93	119,93	
Polyuréthane (PU)	-	119,93	119,93	
Symclosene	78,66	-	78,66	
Total	82,8	631,2	714	

Tableau 20 : Quantités de matières combustibles présentes dans la cellule de 861 m²

Pour la cellule de 10 950 m², les quantités de matières combustibles présentes sont les suivantes (sur la base de 15 260⁸ palettes de type 1510) :

Matériaux	Quantité présente (en tonnes)
Bois	457,8
Papier/carton	6 409,20
Polypropylène (PP)	686,7
Polyéthylène (PE)	686,7
Polystyrène (PS)	686,7
PVC	228,9
Total	9 156

Tableau 21 : Quantités de matières combustibles présentes dans la cellule de 10 950 m²

⁶ 138 palettes de 600 kg soit 82,8 tonnes

⁷ 1 052 palettes de 600 kg soit 631,8 tonnes

^{8 15 260} palettes de 600 kg soit 9 156 tonnes

Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

Globalement, les quantités totales de matières combustibles pour les 2 cellules sont :

Matériaux	Quantité présente (en tonnes)
Polypropylène (PP)	806,63
Polyéthylène (PE)	806,63
Polystyrène (PS)	806,63
PVC	348,83
PU	119,93
Bois	493,50
Papier carton	6409,20
Symclosene	78,66
Total	9 870

Tableau 22 : Quantités de matières combustibles présentes pour les 2 cellules

Les caractéristiques des combustibles présents sont les suivantes :

Matériaux	Vitesse de combustion (g/m²/s)	Source	PCI (MJ/kg)	Source
Polypropylène (PP)	14	Document « an introduction to fire dynamics » 2nd, Dougal 43,4 Drysdale		SFPE Handbook of Fire Protection Engineering - Third Edition - 2002
Polyéthylène (PE)	14	fire dynamics » 2nd Dougal 43.6		SFPE Handbook of Fire Protection Engineering - Third Edition - 2002
Polystyrène (PS)	35	Document « an introduction to fire dynamics » 2nd, Dougal 39,2 Drysdale		SFPE Handbook of Fire Protection Engineering - Third Edition - 2002
PVC	21,7	A study of the flammability of plastics in vehicle components and parts by A. Tewarson (Factory Mutual) October 1997	16,4	SFPE Handbook of Fire Protection Engineering - Third Edition - 2002
Polyuréthane (PU)	26	Document « an introduction to fire dynamics » 2nd, Dougal Drysdale	23,2	SFPE Handbook of Fire Protection Engineering - Third Edition - 2002
Bois	13	Document « an introduction to fire dynamics » 2nd, Dougal Drysdale	16,4	SFPE Handbook of Fire Protection Engineering - Third Edition - 2002
Papier carton	48	Analyse des risques associés à l'industrie papetière, INERIS (pour carton)	21,5	Techniques de l'incendie et de la construction, INRS
Symclosene	/	Aucune donnée disponible /		Aucune donnée disponible

Tableau 23 : Caractéristiques de combustion des produits présents

Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

Le tableau suivant présente les résultats des caractéristiques de combustion moyennes du stockage en fonction de sa composition :

Matériaux	Quantité présente Combustion (g/m²/s)		PCI (MJ/kg)
Polypropylène (PP)	806,63	14	43,4
Polyéthylène (PE)	806,63	14	43,6
Polystyrène (PS)	806,63	35	39,2
PVC	348,83	21,7	16,4
PU	119,93	26	23,2
Bois	493,50	13	16,4
Papier carton	6409,20	48	21,5
Symclosene	78,66	/	/
Caractéristiques moyennes de combustion du stockage ⁹		38,37	26,17

Tableau 24 : Caractéristiques moyennes de combustion des matières combustibles présentes

Les conséquences de l'incendie de ce stockage seront donc modélisées en retenant :

- une vitesse de combustion moyenne de 38,37 g/m²/s,
- un pouvoir calorifique de 26,17 MJ/kg.

5.2 Caractéristiques du terme source

La surface de la zone de stockage, soit l'ensemble des 2 cellules, est de $11~811~m^2$ (une cellule de $861~m^2$ et une de $10~950~m^2$).

Les débits de polluants sont calculés selon la méthodologie présentée au chapitre 2.1.2, en considérant une vitesse de régression moyenne de 38,37 g/m²/s. Ils sont présentés dans le tableau suivant :

Composé	CO ₂	со	HCI	HCN	NO ₂	Air	Fumées totales
Débit massique (en kg/s)	843,3	53,7	11,1	0,6	1,0	37 516	38 426

Tableau 25 : Débits massiques de polluants

Le débit total des fumées (polluants + air entraîné) est de 38 426 kg/s au sommet des flammes.

La hauteur d'émission des fumées toxiques, calculée selon méthodologie présentée au chapitre 2.1.3, est de 91 m.

⁹ Les caractéristiques de combustion moyennes ont été calculées sans tenir compte des caractéristiques de combustion du Symclosene pour lequel aucune donnée n'est disponible. S'agissant d'un produit de traitement pour piscine, il ne présente pas de caractère combustible élevé et, en tout état de cause, plus faible que les matières de type plastiques, bois ou cartons. Par ailleurs, il représente moins de 1% de la masse totale des produits stockés.

L'approche retenue est donc dimensionnante.

ANTEA GROUP

BIGS – Paris (75) Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

5.3 Durée d'exposition

Selon le « Glossaire des risques technologiques » (partie 3 de la circulaire du 10 mai 2010), la cinétique est définie comme la vitesse d'enchaînement des événements constituant une séquence accidentelle, de l'événement initiateur aux conséquences sur les éléments vulnérables.

La cinétique d'un phénomène dangereux pourra être qualifiée de lente dans son contexte si elle permet la mise en œuvre de mesures de sécurité suffisantes dans le cadre d'un plan d'urgence interne et externe, pour protéger les personnes à l'extérieur de l'installation avant qu'elles ne soient atteintes par les effets du phénomène dangereux.

Dans le cadre de l'étude, la durée d'exposition considérée est de 60 minutes, correspondant à la durée maximale d'exposition envisagée pour les seuils d'effets toxiques dans l'Arrêté Ministériel du 29/05/2005 (cf. Tableau 2 : Valeurs de référence relatives aux seuils de toxicité aiguë).

Avec les débits d'air et de produits toxiques, les seuils équivalents retenus pour une exposition de 60 minutes sont :

SEI équivalent : 65 971 ppm,
SPEL équivalent : 245 961 ppm,
SELS équivalent : 300 345 ppm

Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

5.4 Evaluation de l'intensité des effets du phénomène dangereux n°3 - Conclusion

Les figures suivantes présentent les panaches de fumées (en coupe verticale dans le sens du vent) correspondant aux différents effets.

Figure 7 : PhD3 - Vue en coupe verticale des panaches de fumées correspondant aux effets irréversibles (SEI) en présence des différentes conditions météorologiques étudiées

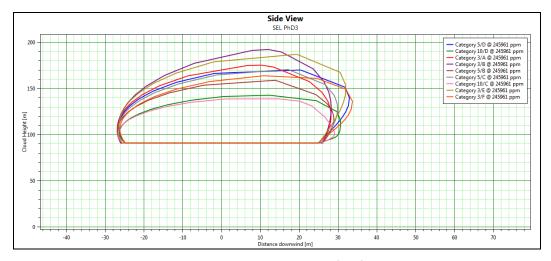


Figure 8 : PhD3 - Vue en coupe verticale des panaches de fumées correspondant aux premiers effets létaux (SPEL) en présence des différentes conditions météorologiques étudiées

Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

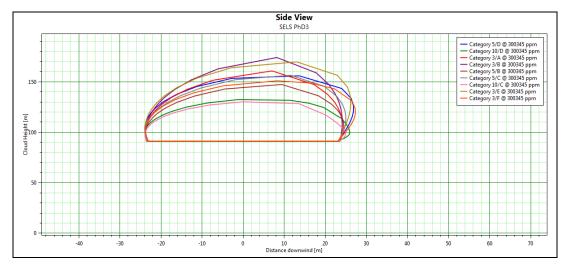


Figure 9 : PhD3 - Vue en coupe verticale des panaches de fumées correspondant aux effets létaux significatifs (SELS) en présence des différentes conditions météorologiques étudiées

Les distances d'effets pour une durée d'exposition de 60 minutes sont les suivantes :

Seuil	Distance
SEI	 Aucun effet toxique n'est observé à hauteur d'homme (h < 2 m) Hauteur minimale d'atteinte du seuil toxique : 91 m à la source Distance maximal atteinte par les fumées toxiques : 170 m de la source à h = 210 m
SPEL	 Aucun effet toxique n'est observé à hauteur d'homme (h < 2 m) Hauteur minimale d'atteinte du seuil toxique : 91 m à la source Distance maximal atteinte par les fumées toxiques : 33 m de la source à h = 136 m
SELS	 Aucun effet toxique n'est observé à hauteur d'homme (h < 2 m) Hauteur minimale d'atteinte du seuil toxique : 91 m à la source Distance maximal atteinte par les fumées toxiques : 28 m de la source à h = 126 m

Tableau 26: PhD3 – Distances d'effets (au sol et en hauteur)

V VI.	TFA	CD	\sim	חו
AIN	ΙГΑ	חרו	·	JP

BIGS – Paris (75) Modélisation des effets toxiques générés par les fumées d'incendie d'un entrepôt de stockage de marchandises diverses – Mouflers l'Etoile (80) Rapport n° 94664/A

Observations sur l'utilisation du rapport

Ce rapport, ainsi que les cartes ou documents, et toutes autres pièces annexées constituent un ensemble indissociable; en conséquence, l'utilisation qui pourrait être faite d'une communication ou reproduction partielle de ce rapport et annexes ainsi que toute interprétation au-delà des énonciations d'ANTEA GROUP ne saurait engager la responsabilité de celle-ci. Il en est de même pour une éventuelle utilisation à d'autres fins que celles définies pour la présente prestation.

Fiche signalétique

Rapport

Titre: Modélisation des fumées d'incendie d'un entrepôt de stockage de marchandises

diverses - Mouflers l'Etoile (80)

Numéro et indice de version : 94664/A

Date d'envoi : 16 juillet 2018 Nombre de pages : 30

Diffusion (nombre et destinataires) : -

Nombre d'annexes dans le texte : -Nombre d'annexes en volume séparé : -

Client

Coordonnées complètes : BIGS

165bis, rue de Vaugirard

75015 PARIS

Tél.: 01 56 54 33 99 Fax: 01 56 54 33 90

Nom et fonction de l'interlocuteur : Stéphane RODRIGUEZ

ANTEA

Unité réalisatrice : Agence Rhône-Alpes-Méditerranée

Nom des intervenants et fonction remplie dans le projet :

Interlocuteur commercial: Stéphane DUBOIS

Auteur: Antonin ROLLAND

Qualité

Contrôlé par : Stéphane DUBOIS Date : 17 juillet 2018 - Version A

N° du projet : PACP170051

Références et date de la commande : BET 1057 JJA en date du 10 juillet 2018

Mots-clés: Modélisation, incendie, fumées